
Integrating a Gaussian Classifier into a CNN

Independent Work Final Report

Pulkit Singh
Advisor: Thomas L. Griffiths

Contributors: Joshua C. Peterson, Ruairidh M. Battleday

Abstract

The assignment of natural images to categories is an important problem both in

machine learning and in the study of human cognition. Visual categorization models

in psychology examine strategies of human categorization, which computer vision mod-

els seek to effectively discriminate between categories. Convolutional Neural Networks

(CNNs) are the current state-of-the-art in computer vision — the training performance

of these discriminative models is approaching near perfect levels, but their generaliz-

ability leaves room for improvement. On the other hand, cognitive models are density

estimators: generative not discriminative. In particular, prototypical models catego-

rize by measuring distance from the ‘mean’ or ‘ideal’ prototype of a category. Given

the related nature of these fields, it is interesting to ask whether the research results

from one can inform and enrich the goals of the other. Motivated by the notions of

testing prototype theory on representations created by CNNs, and exploring ways for

the CNN to make more human-like representations of categories, this project integrates

a differentiable Gaussian classifier in a Convolutional Neural Network. In particular,

it models classes in the CIFAR-10 dataset as multivariate Gaussian distributions, and

creates three custom Keras classification layers corresponding to nested constraints on

the covariance of the distributions. This project finds that these class representation do

not impede accuracy of predictions, and significantly decreases the discrepancy between

human and machine-learned distributions of judgements.

1



1 Motivation and Goal

The assignment of natural images to categories is an important problem both in machine

learning and in the study of human cognition. The study of categorization in psychology

seeks to understand the strategies humans use to categorize stimuli, while the field of image

classification in computer vision seeks to build systems that can effectively discriminate

between natural images of different categories. In other words, the field of categorization

in psychology examines how humans generate categories and the field of classification in

computer science is interested in teaching machines to discriminate between these categories.

Given the related nature of these fields, it is interesting to ask whether the research results

from one can inform and enrich the goals of the other.

In computer vision, the current state of the art models are Convolutional Neural Net-

works (CNNs) which employ convolutional filters to identify low-level features in images, and

pool these features to build increasingly high-level representations. In essence, CNN’s create

spatial feature maps from images, and then discriminate between these created representa-

tions in order to classify images. These discriminative models are aimed at optimizing the

accuracy, i.e. the proportion of correctly-classified inputs, and they deal directly with the

probability of class membership given an image. This approach is very effective, and their

performance on natural image classification tasks is asymptoting towards near-perfect levels

on training data [Hua+18], but their generalization capability presents room for improvement

[Zha+16].

On the other hand, cognitive models are concerned with capturing human classification

behaviour — human categorization models are density estimators: generative not discrimi-

native. The classic paper by Posner and Keele (1968) posits that people represent categorical

concepts through prototypes. Prototypes are described to be mental constructs containing

typical characteristics of various categories. Then, when a person encounters a new object,

they compare it to the category prototypes in memory [PK68]. Thus, we see that in this

prototype paradigm, categorization is wholly dependent on the representation of different

2



classes of objects.

Then, taking a step back, we see that categorization theories prototype theory are very

concerned with the representation of classes, whereas CNN classifiers have no fixed rep-

resentation of classes. In general, we often have little control over the intermediate class

representations in a neural network, but it would be interesting to examine the implica-

tions of imposing a particular density estimation. This is exactly the key motivation behind

this project — to explore the consequences of exploring different class representations in

discriminative models. This enables us to effectively test the classical prototype theory of

categorization, and it may also provide insights into enabling CNNs to produce more robust,

human-like errors.

While it is possible to test categorization theories at an image level, i.e., to compute

image means for each class, it is very ineffective because the pixel space is extremely sparse

and we are unable to gather enough critical information. We need to be able to isolate

important features of the images and create representations that will enable classification

- something that CNNs are very good at doing. Thus, the need for feature encoding and

category modelling at the same time motivates the goal of integrating a differentiable

Gaussian classifier in a Convolutional Neural Network. This approach enables the

CNN to learn a representation of training images such that Gaussian densities over these

representations accurately predicts category membership.

We will then be able to test these classifier-integrated model not only on traditional met-

rics like accuracy, but also on how human-like the resulting category representations are.

This is possible because of a novel dataset, CIFAR10-H, which comprises full label distribu-

tions for the entire 10,000-image CIFAR10 test set, utilizing over 500k crowd-sourced human

categorization judgments [BPG19]. This dataset enables us to compute the discrepancy be-

tween human distributions and the machine-learned distribution, enabling us to investigate

the effect of enforcing class representations.

3



2 Problem Background and Related Work

Research related to both cognitive modelling and computer vision has been gaining traction

in recent years. The success of Convolutional Neural Networks has led to exploration into the

reasons for their efficacy, including their ability to produce useful representations of images.

A paper by Peterson, Abbott & Griffiths examined the “relationship between the represen-

tations learned by these networks and human psychological representations recovered from

similarity judgments", and found that “deep features learned in service of object classification

account for a significant amount of the variance in human similarity judgments for a set of

animal images" [PAG17]. Their research also indicated that the representations still lacked

“some some qualitative distinctions that are a key part of human representations" [PAG17].

This work indicates not only the potential for neural networks to model human categories,

but also prompts the exploration of integrating different class representations within a neural

network to examine this discrepancy.

The notion of using neural networks to create embeddings of images that correspond to

class-clusters has also been explored in a paper by Snell, Swersky & Zemel. They propose

“prototypical network for few-shot learning", which “learns a metric space in which classifi-

cation can be performed by computing distances to prototype representations of each class"

[SSZ17]. In other words, they learn a "non-linear mapping of the input into an embedding

space using a neural network", and then extract these representations from the network and

perform classification using squared Euclidean distance. Using this approach, they were able

to achieve state-of-the-art results on the zero-shot learning dataset CUB-200 [SSZ17]. This

work indicates the potential of modelling classes as clusters/distributions. However, the

classification process is separate from the production of embeddings, whereas this project

proposes an integrated approach where both embeddings and densities over these embeddings

are learned jointly.

Another related project by Wen, Zhang, Li & Qiao focuses on discriminative feature

learning for deep face recognition using "center loss". In order to “enhance the discrimina-

4



tive power of deeply learned features" for face recognition, the center loss “simultaneously

learns a center for deep features of each class and penalizes the distances between deep

features and their corresponding class centers" [Wen+16]. The models are trained with a

combination of conventional ’softmax’ loss and center loss, and they are able to achieve state-

of-the-art results on “MegaFace (the largest public domain face benchmark)"[Wen+16]. This

paper further demonstrates the potential of integrating distance computations in the embed-

ding space of a neural network, and lays the foundation of modelling classes as probability

distributions.

3 Approach

3.1 Modeling Categories as Probability Distributions

Convolutional Neural Networks (CNNs) rely on convolution-pooling cycles to identify fea-

tures of the input image and pool the identified features together in order to create spatial

feature maps. The feature map of an image can be converted into a generic vector using a

fully-connected layer, or merely by flattening the representation. An image is a giant matrix

(or set of matrices) of pixel values, and the CNN embeds in into a vector representation that

is of lower dimension than the original but still relatively high. This means we can think of

each image as being embedded as a point in this high-dimensional space.

In the context of a classifier, the classes of images that we would like the model to

differentiate between are just groups of points that correspond to the representations of

input images. This project models each class of images as a multivariate Gaussian probability

distribution by integrating a differentiable Gaussian classifier within the CNN. The density

of the points in the different class distributions rely on the representations created by the

CNN. But, we want to learn the embeddings of the images and densities of the classes

jointly, so that we learn a representation of images such that a Gaussian density over those

representations best predicts category membership.

5



3.2 Gaussian Classifier

Now that the motivation for modelling the classes as Gaussian probability distributions in

understood, we can move on to mathematically specifying the classifier. Let us consider

a set of N images to be classified into k categories. We want to fit multivariate Gaussian

distributions to each of these classes. For each class, let us define:

µc : mean feature vector (d-dimensional vector)

Σc : covariance matrix (d x d matrix)

First, let us consider the functioning of the classifier with one image, and then we can

generalize to the classification of N images.

3.2.1 Classifying One Image

Let us define a training image I (matrix of s x s pixels) and the true category label y. The

image I is transformed into spatial feature maps, and then embedded into vector representa-

tion x. We must work on classifying x, the d-dimensional vector that the CNN has produced

for image I. We need to find the specify a discriminant function that specifies the probability

of each class, given the training example. Bayes rule tells us:

P [y = c | x] =
P [x | y = c] · P [y = c]∑
c′ P [x | y = c] · P [y = c′]

But, if we have no information about the prior probabilities of the classes, then it would

be safe to set all the values of P [y = c] equal to each other. In this case, the posterior

probability is equal to the normalized likelihood as shown below:

P [y = c | x] =
P [x | y = c]∑
c′ P [x | y = c′]

6



We set our discriminant function g to exactly this normalized likelihood as follows:

g(x, c) =
P [x | y = c]∑
c′ P [x | y = c′]

Since we are fitting multivariate Gaussian distributions to all the classes, the individual

class-conditional likelihoods are proportional to the exponentiated negative Mahalanobis

distance. This means the probability that x belongs to the c-th class (with mean µc and

covariance matrix Σc) is proportional to:

P [x | y = c] ∝ e−(x−µc)T ·Σ−1
c ·(x−µc)

Then, we can reformulate the discriminant function in terms of Mahalanobis distances

(for brevity M(x, c)).

g(x, c) =
e−(x−µc)T ·Σ−1

c ·(x−µc)∑
c′ e
−(x−µc′ )T ·Σ

−1
c′ ·(x−µc′ )

=
e−M(x,c)∑
c′ e
−M(x,c′)

We notice that the activation being applied to the Mahalanobis distances between the

input and the classes is the normalized exponential function, or the softmax activation. This

function can take a vector of real numbers and normalize it into a probability distribution

vector. So, for every training image, the classifier needs to produce a k-dimensional vector

of Mahalanobis distances from each of the k-classes, and then we can apply the softmax

activation to this vector.

3.2.2 Classifying N images

Now that we have worked out the functioning of the classifier with a single input image x,

we can generalize to a set of N images. For each image, the CNN produces a d-dimensional

vector, so let us consider the (N x d) matrix X as the input to the Gaussian classification

layer. In X, each row corresponds to the CNN representation of a unique image.

We can specify an analogous discriminant function G(X, c) which produces the prob-

7



ability of each row of the matrix X belonging to class c. The result would be a (N x k)

matrix of normalized likelihoods such that the ith row corresponds to the class probabilities

corresponding to the ith image. Additionally, for each row, the jth column corresponds to the

likelihood that the corresponding image belongs to the jth class. This matrix of normalized

likelihoods (labelled NL) is illustrated below:

NL =


P (x1|y=c1)∑
c′ P [x|y=c′]

... P (x1|y=ck)∑
c′ P [x|y=c′]

...
...

...
P (xN |y=c1)∑
c′ P [x|y=c′]

... P (xN |y=ck)∑
c′ P [x|y=c′]



Thus, we have successfully created a mechanism to compute a probability distribution

for each image over all the classes. To calculate the discrepancy between the computed

distribution and the true label or distribution in our dataset, we can use the cross-entropy

function. Given two probability distribution vectors, p (true distribution) and q (fitted

distribution), the cross-entropy between them can be calculated by:

cross-entropy(p, q) = −pT · log(q)

Then, to calculate the total discrepancy between the true and estimated distributions

over all training examples in X, we can run the cross-entropy function on the prediction for

every image and corresponding output label. Let Y be the (N x k) matrix corresponding

to the true category distribution (or one-hot encoded label), such that the ith row of C

corresponds to the output distribution for the ith image in X. Then, the total discrepancy,

or training error can be calculated as:

training error = crossentropy(C, NL) = - colsum(rowsum(C .* log(NL)))

8



3.3 Examining the Nested Range of Models

It is now clear that the probability of class-membership is modelled as normalized likelihood,

and that this is proportional to the exponentiated negative Mahalanobis distance between

the input and the mean of the distribution. Since this distance computation is essential

to the project, let us stop and examine it. Just as before, let x be d-dimensional input

and µc and Σc be the mean and covariance matrix of the cth class respectively. Then, the

Mahalanobis distance between x and µc (M(x, µc))is given by:

M(x, µc) = (x− µc)T · Σ−1
c · (x− µc)

We see that the only source of variability in this computation is the inverse covariance

matrix Σ−1
c , as x and µc remain fixed. The covariance matrix Σc can take many forms,

and these forms dictate the flexibility of the multivariate Gaussian distributions that we are

fitting to the various classes. In particular, the covariance matrix of a particular class can

take the following forms:

• identity

• scaled identity

• diagonal / axis-aligned

• free

These constraints dictate the flexibility or the complexity of the gaussian distributions.

The following figure illustrates the kinds of classes each matrix-form creates in 2-dimensions:

9



Figure 1: Covariance matrix constraints and corresponding class representations

In two dimensions, we see that the identity covariance matrix produces circular classes

- i.e. the two dimensions are independent and have unit variance. The scaled identity

covariance matrix also produces circular classes, but the magnitude of the variance of the

classes can be adjusted, resulting in the different size circles. Then, diagonal matrices enable

the classes to be pulled along the axes, resulting in axis-aligned ellipses for each of the classes.

Finally, a free covariance matrix allows the classes to be modelled as arbitrary ellipses, that

can be oriented in any way. The following table generalizes these 2-dimensional intuitions

to an arbitrary d-dimensional space.

10



Covariance Constraint Matrix Form Class Distribution

identity


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 classes are identical spheres
in a d-dimensional space

(d-spheres)

scaled identity


k 0 0 0
0 k 0 0
0 0 k 0
0 0 0 k

 classes are variable ’size’
d-spheres

diagonal


k1 0 0 0
0 k2 0 0
0 0 k3 0
0 0 0 k4

 classes are axis-aligned
d-dimensional ellipsoids

free


k1 k2 k3 k4

k5 k6 k7 k8

k9 k10 k11 k12

k13 k14 k15 k16

 classes are arbitrary
d-dimensional ellipsoids

Table 1: Constraints on covariance matrices and corresponding class distributions

Thus, the constraints on the covariance matrix produces a nested range of models that

specify the flexibility of multivariate Gaussian distributions corresponding to the classes. In

order to stay in the scope of a single-semester project, we create the first three models in

the range, corresponding to the identity, scaled identity and diagonal covariance constraints.

This section explained the motivation to model classes as probability distributions, worked

through the Gaussian Classifier, and examined the range of models to be built. The next

section details the implementation of these nested models.

11



4 Implementation

This section provides a high-level overview of the implementation of this project. The three

models to be implemented correspond to the nested covariance-constraints discussed in the

last section. In all three cases, the classifier is integrated into the neural network by creating

a custom layer, that performs the required Mahalanobis distance computation. These cus-

tom layers receive the convolutional neural network’s embeddings of the training images as

input, and they output the normalized class-membership likelihoods of the images. The lay-

ers learn the means and paramaters of the covariance matrices as their ‘weights’. The loss is

computed by measuring the discrepancy between the true distribution and the estimated dis-

tribution (using the cross-entropy function), and this error signal is back propagated through

the network so that the network jointly learns image representations and Gaussian densities

over classes. The following figure illustrates the abstract architecture of this network:

Figure 2: Abstract architecture of classifier-integrated network

4.1 Building a Custom Keras Layer

As mentioned before, the three custom layers to be built correspond to the covariance-

constraints discussed in the approach section. This project uses Keras, a high-level neural

networks API, with a TensorFlow backend. As noted before, the normalized likelihood vec-

tor for each image corresponds to computing the mahalanobis distance of each embedding

from the mean of each class, and then applying to softmax activation to the layer. So, each

12



classifier is a custom Keras ‘layer’ object that simply computes the required distance, with

the native Keras ’softmax’ activation on top.

Turning our attention to the layers themselves, we specify the parameters that each layer

learns. When the covariance is the identity matrix, the Mahalanobis distance computation

reduced to Euclidean distance, so we label the first classifier the ’Euclidean distance layer’.

The scaled identity matrix produces n-spheres scaled by some constant, so we label the

corresponding classifier the ’Mahalanobis constant covariance layer’. Finally, the diagonal

covariance matrix produce axis-aligned n-ellipsoids for classes, so we label the classifier ’Ma-

halanobis axis-aligned covariance layer’. The following table lists each of the custom layers

and details the parameters it learns:

Classification Layer Learnt Parameters

Euclidean distance
layer mean vector for each class, µc = [m1m2m3...md]

Mahalanobis constant
covariance layer mean vector for each class, µc = [m1m2m3...md]

scale constant for each class, sc
Mahalanobis
axis-aligned

covariance layer
mean vector for each class, µc = [m1m2m3...md]

diagonal values of covariance matrix,
µc = [a1a2a3...ad]

Table 2: Parameters learned for each custom layer

4.2 Defining the Models

4.2.1 all-CNN Baseline

The All Convolutional Net (all-CNN) architecture was proposed by Springenberg, Dosovit-

skiy, Brox and Riedmiller in order to create a simple but powerful architecture using the

principles that the vast majority of modern CNNs are built on. They came up with a “a

13



homogeneous network solely consisting of convolutional layers, with occasional dimensional-

ity reduction by using a stride of 2", and were able to achieve state-of-the-art performance

without the need for “complicated activation functions" or “max-pooling".[Spr+15] The sim-

ple and parameter-efficient approach of this network makes it the ideal starting point for the

neural network architectures for this project.

4.2.2 Modifying the Baseline

Two changes were made to the original all-CNN architecture in order to make a comparable

and efficient baseline for the other custom models. First, batch normalization was added after

every convolution to enable the network to train faster. Second, the original architecture

performed classification in 192-dimensional space created by the convolutions. But, the

custom classification layers perform classification in a 10-dimensional space (as the number

of classes is 10). So, in order to make the models comparable, a simple fully-connected 10-

dimensional layer was added to the original all-CNN architecture. In the case of the three

custom models, this 10-dimensional fully-connected layer is simply replaced by the custom

classification layers. The following figure lays out the differences in architecture between all

models:

14



original all-CNN custom models

3 x 3 conv. 96 ReLU
3 x 3 conv. 96 ReLU

3 x 3 conv. 96 ReLU
batch normalization
3 x 3 conv. 96 ReLU
batch normalization

3 x 3 conv. 96 ReLU (stride = 2)
dropout

3 x 3 conv. 96 ReLU (stride = 2)
dropout

3 x 3 conv. 96 ReLU
3 x 3 conv. 96 ReLU

3 x 3 conv. 96 ReLU
batch normalization
3 x 3 conv. 96 ReLU
batch normalization

3 x 3 conv. 96 ReLU (stride = 2)
dropout

3 x 3 conv. 96 ReLU (stride = 2)
dropout

3 x 3 conv. 96 ReLU
3 x 3 conv. 96 ReLU

3 x 3 conv. 96 ReLU
batch normalization
3 x 3 conv. 96 ReLU
batch normalization

global average pooling
global average pooling
dense 10 (baseline) OR
classification layer (custom models)

Table 3: Modifying original all-CNN architecture

4.3 Datasets

The models are trained on the CIFAR-10 dataset, which consists of 60000 32x32 colour

images in 10 classes, with 6000 images per class. The dataset is divided into 50000 training

images and 10000 test images.[Kri09] The following figure visualizes the 10 classes in the

data, along with 10 random images from each:

15



Figure 3: Visualization of the CIFAR10 dataset [Kri09]

In addition to testing the accuracy of these models on CIFAR-10, this project also

tests the discrepancy between the distribution of human judgments and machine-learned

judgments. As mentioned in the motivation, this is possible because of a novel dataset,

CIFAR10-H, which comprises full label distributions for the entire 10,000-image CIFAR10

test set, utilizing over 500k crowd-sourced human categorization judgments.[BPG19] The

following image visualizes the difference between the CIFAR-10 and CIFAR10-H labels:

Figure 4: Visualizing CIFAR-10 vs CIFAR10-H labels

16



Thus, as CIFAR10-H contains a full distribution of judgments, we can compare the rel-

ative activation of humans and the machine systems for each image. In other words, cross-

entropying the vector of human judgments and machine-learned judgments for every images

gives us the discrepancy between them, and summing over these discrepancies produces a

measure of the difference between humans and machines. Thus, each models cross-entropic

loss on the CIFAR10-H dataset enable us to compare them on how human-like their judg-

ments are.

5 Results

5.1 Training and Testing on CIFAR-10

All models were trained for 100 epochs on the CIFAR-10 training set, and subsequently

tested on the validation set. The variation of training and test loss for all models, across

epochs of training, is demonstrated below. The epoch with lowest test loss is marked with a

dotted black line in each case.

17



Figure 5: Training and test error on CIFAR-10 for all models

Similarly, the next figure illustrates the variation in accuracy (proportion of correct judg-

ments) for all models, across epochs of training. The epoch with highest test accuracy is

marked with a dotted black line in each case.

18



Figure 6: Training and test accuracy on CIFAR-10 for all models

In each case, we select the weights that maximize the test accuracy for each model, in

order to perform further analysis. The following figure illustrates the selected weights and

corresponding training and test accuracy for each model:

19



Model Epoch Training Accuracy Test Accuracy
all-CNN baseline 94 0.99992 0.87190
euclidean distance model 93 1.00000 0.88860
mahalanobis constant-covariance model 95 0.99996 0.88871
mahalanobis axis-aligned model 96 0.99996 0.87830

Table 4: Selected weight and corresponding accuracy for each model

We see that all the models have near-perfect performance on the training data, and com-

parable performance of about 88% on the CIFAR-10 test set. The Mahalanobis constant-

covariance model does marginally better than the Euclidean model, followed by the Maha-

lanobis axis-aligned model and the all-CNN baseline. Thus, we see that imposing constraints

on the class-representations of the CNN does not impede test accuracy.

5.2 Testing on CIFAR-10H

Now, to compare how human-like the class representations are, we test the loss of the models

(with the weights selected above) on the CIFAR10-H dataset. The following figure illustrates

the CIFAR10-H loss and accuracy of all the models (with the weights selected above):

Model CIFAR10-H Accuracy CIFAR10-H Loss
all-CNN baseline 0.88250 1.01579
euclidean distance model 0.88310 0.68827
mahalanobis constant-covariance model 0.88570 0.85824
mahalanobis axis-aligned model 0.87780 0.89453

Again, we see that all models have comparable accuracy on human labels, of around

88%. But, we see that all models perform better than the baseline in terms of loss on

human labels. The Euclidean distance model in particular, does drastically better than the

baseline, followed by the two Mahalanobis distance models. In order to get a better sense on

the changes in loss and accuracy on the human labels over the course of training, we evaluate

all the models on the human data after every epoch. The results from this experiment are

20



illustrated below. The lowest loss and highest accuracy are marked with a dotted black line

in each case.

Figure 7: Loss and Accuracy on CIFAR10-H over the course of training

It is interesting to note that for all models the loss on human-labels dips very early-on

in the training and then continues to increase as the model fits for accuracy. This increase

happens most sharply for the baseline and most gradually for the euclidean distance model.

Meanwhile, even though loss on human-labels has increased by the end of training, accuracy

on human labels is highest towards the end. It is unclear why this pattern occurs across

models, and it is hence pertinent to examine the minimum loss in each case. This is illustrated

in the figure below:

Model Minimum Loss on Human Labels Epoch Num
all-CNN baseline 0.66922 10
euclidean distance model 0.54913 14
mahalanobis constant-covariance model 0.58046 10
mahalanobis axis-aligned model 0.61439 13

Table 5: Minimum loss on human labels across models

It seems that the baseline’s minimum CIFAR10-H loss is a lot closer to the minimum

21



loss of the other models, but the Euclidean model still does the best, followed by the two

Mahalanobis distance models. These patterns warrant further investigation. One possibility

could be that it is easier for the CNN to simply learn representations that take feature-scaling

into account than to learn a covariance matrix, and this is why the Mahalanobis distance

models perform worse than the Euclidean distance ones.

5.3 Visualizing Class Representations

In order to get a sense of what the range of models learn, we visualize the class represen-

tations. In other words, we take the 192-dimensional inputs to the classification layers in

each of the models, and project them onto 2 dimensions in order to get a sense of the class

representations in each case. This dimensionality reduction is performed using 3 different

techniques - Principal Component Analysis, Linear Discriminant Analysis and t-distributed

Stochastic Neighbor Embedding. The resulting visualizations are plotted below:

Figure 8: Visualizing class representations of Baseline Model

22



Figure 9: Visualizing class representations of Euclidean Distance Model

Figure 10: Visualizing class representations of Mahalanobis Constant-Covariance Model

Figure 11: Visualizing class representations of Mahalanobis Axis-Aligned Covariance Model

It seems that the baseline is a bit more scattered than the rest of the models. One

interesting point to note is the Principal Component Analysis produces the most separated

results in the Euclidean model. This indicates that the Euclidean model is more separable

either on all dimensions or on the dimensions of most overall variation (across all images in

all categories) than the other models.

23



6 Evaluation and Further Work

This project has shown that imposing class representations on discriminative models can

produce more human-like representations of classes. There are many questions to be an-

swered, including why the loss across models dips early on in the training and the reason

the Euclidean model performs best on human labels. One idea for future work would be

to compare these models to those that aim for low intra-class variability - like center less

described above - in order to better understand the optimal representations of classes. In

addition, these classifier layers should be embedded into models of different architectures,

and trained on larger datasets to test the replication of behaviour.

7 Acknowledgments

I would like to acknowledge my advisor Tom Griffiths for his continued support and encour-

agement. I am also incredibly grateful to Josh Peterson and Ruairidh Battleday for their

mentorship and contributions to this project. I would also like to thank my family and

friends for supplying me with endless amounts of moral support and caffeine.

References

[PK68] Posner and Keele. Prototypes. 1968. url: https://coglab.cengage.com/labs/

prototypes.shtml.

[Kri09] Alex Krizhevsky. Learning Multiple Layers of Features from Tiny Images. 2009.

url: https://www.cs.toronto.edu/~kriz/cifar.html.

[Spr+15] Jost Tobias Springenberg et al. “Striving for Simplicity: The All Convolutional

Net”. In: 3rd International Conference on Learning Representations, ICLR 2015,

San Diego, CA, USA, May 7-9, 2015, Workshop Track Proceedings. 2015. url:

http://arxiv.org/abs/1412.6806.

24

https://coglab.cengage.com/labs/prototypes.shtml
https://coglab.cengage.com/labs/prototypes.shtml
https://www.cs.toronto.edu/~kriz/cifar.html
http://arxiv.org/abs/1412.6806


[Wen+16] Yandong Wen et al. “A Discriminative Feature Learning Approach for Deep Face

Recognition”. In: ECCV. 2016.

[Zha+16] Chiyuan Zhang et al. “Understanding deep learning requires rethinking gener-

alization”. In: CoRR abs/1611.03530 (2016). arXiv: 1611.03530. url: http:

//arxiv.org/abs/1611.03530.

[PAG17] Joshua C. Peterson, Joshua T. Abbott, and Thomas L. Griffiths. “Adapting

Deep Network Features to Capture Psychological Representations: An Abridged

Report”. In: Proceedings of the Twenty-Sixth International Joint Conference on

Artificial Intelligence (Aug. 2017). doi: 10 . 24963 / ijcai . 2017 / 697. url:

http://dx.doi.org/10.24963/ijcai.2017/697.

[SSZ17] Jake Snell, Kevin Swersky, and Richard S. Zemel. “Prototypical Networks for

Few-shot Learning”. In: CoRR abs/1703.05175 (2017). arXiv: 1703.05175. url:

http://arxiv.org/abs/1703.05175.

[Hua+18] Yanping Huang et al. “GPipe: Efficient Training of Giant Neural Networks using

Pipeline Parallelism”. In: CoRR abs/1811.06965 (2018).

[BPG19] Ruairidh M Battleday, Joshua C Peterson, and Thomas L Griffiths. “Capturing

human categorization of natural images at scale by combining deep networks

and cognitive models”. In: arXiv preprint arXiv:1904.12690 (2019).

25

http://arxiv.org/abs/1611.03530
http://arxiv.org/abs/1611.03530
http://arxiv.org/abs/1611.03530
https://doi.org/10.24963/ijcai.2017/697
http://dx.doi.org/10.24963/ijcai.2017/697
http://arxiv.org/abs/1703.05175
http://arxiv.org/abs/1703.05175

	Motivation and Goal
	Problem Background and Related Work
	Approach
	Modeling Categories as Probability Distributions
	Gaussian Classifier
	Classifying One Image
	Classifying N images

	Examining the Nested Range of Models

	Implementation
	Building a Custom Keras Layer
	Defining the Models
	all-CNN Baseline
	Modifying the Baseline

	Datasets

	Results
	Training and Testing on CIFAR-10
	Testing on CIFAR-10H
	Visualizing Class Representations

	Evaluation and Further Work
	Acknowledgments

